skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lester, Daniel W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 21, 2026
  2. An OCO-pincer supported tungsten(VI) alkylidyne exhibits diverse reactivity depending on the identity of the oxidizing agent and the stoichiometry of the reaction. Oxidation reactions are studied with azo, nitroso, and oxo compounds. Benzo(c)cinnoline facilitates migratory insertion of the alkylidyne carbon in the pincer backbone forming a tethered tungsten (VI) alkylidene complex. Analogous azobenzene activates a Csingle bondC bond in the tert—butyl group of the alkylidyne and results in a tungsten di-imido complex. Nitrosobenzene and pyridine N-oxide undergo oxygen atom transfer (OAT) reactions and result in tungsten oxo complexes. Reactions with nitrosobenzene are sensitive to stoichiometry; Csingle bondC bond activation is observed in stoichiometric reactions, while only OAT occurs with excess nitrosobenzene. 
    more » « less
  3. Reactions between tungsten alkylidyne [tBuOCO]W≡CtBu(THF)2 1 and sulfur containing small molecules are reported. Complex 1 reacts with CS2 to produce intermediate η2 bound CS2 complex [O2C(tBuC═)W(η2-(S,C)-CS2)(THF)] 8. Heating complex 8 provides a mixture of a monomeric tungsten sulfido complex 9 and a dimeric complex 10 in a 4:1 ratio, respectively. Heating the mixture does not perturb the ratio. Addition of excess THF in a solution of 9 and 10 (4:1) converts 10 to 9 (>96%) with concomitant loss of (CS)x. Both 9 and 10 can be selectively crystallized from the mixture. An alternative synthesis of exclusively monomeric 9 involves the reaction between 1 and PhNCS. Demonstrating ring expansion metathesis polymerization (REMP), tethered tungsten alkylidene 8 polymerizes norbornene to produce cis-selective syndiotactic cyclic polynorbornene (c-poly(NBE)). 
    more » « less
  4. Tacticity is critical to polymer properties. The influence of solvent on tacticity in the catalytic synthesis of cyclic polynorbornene (c-PNB) is reported. In toluene cis,syndiotactic c-PNB forms; in THF, cis,syn/iso c-PNB forms. 
    more » « less
  5. Not, available (Ed.)
    Abstract Described here is a direct entry to two examples of 3d transition metal catalysts that are active for the cyclic polymerization of phenylacetylene, namely, [(BDI)M{κ2‐C,C‐(Me3SiC3SiMe3)}] (2‐M) (BDI=[ArNC(CH3)]2CH, Ar=2,6‐iPr2C6H3;M=Ti, V). Catalysts are prepared in one step by the treatment of [(BDI)MCl2] (1‐M,M=Ti,V) with 1,3‐dilithioallene [Li2(Me3SiC3SiMe3)]. Complexes2‐Mhave been spectroscopically and structurally characterized and the polymers that are catalytically formed from phenylacetylene were verified to have a cyclic topology based on a combination of size‐exclusion chromatography (SEC) and intrinsic viscosity studies. Two‐electron oxidation of2‐Vwith nitrous oxide (N2O) cleanly yields a [VV] alkylidene‐alkynyl oxo complex [(BDI)V(=O){κ1‐C‐(=C(SiMe3)CC(SiMe3))}] (3), which lends support for how this scaffold in2‐Mmight be operating in the polymerization of the terminal alkyne. This work demonstrates how alkylidynes can be circumvented using 1,3‐dianionic allene as a segue into M−C multiple bonds. 
    more » « less
  6. null (Ed.)